完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, CC | en_US |
dc.contributor.author | Huang, JK | en_US |
dc.contributor.author | Cheng, YT | en_US |
dc.date.accessioned | 2014-12-08T15:18:10Z | - |
dc.date.available | 2014-12-08T15:18:10Z | - |
dc.date.issued | 2005-11-01 | en_US |
dc.identifier.issn | 1531-1309 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/LMWC.2005.859019 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/13124 | - |
dc.description.abstract | In this letter, a closed-form integral model is presented for the rectangular micromachined spiral inductor. The Kramers-Kronig relations provide an elegant theory to describe the inductor behavior without having complicated geometric analysis. Simulation and measurement results validate that the model can provide satisfactory prediction to the inductance of on-chip freely-suspended spiral inductors. Meanwhile, unlike conventional Greenhouse-based formulations, the self-resonant frequency of inductor can be predicted using the integral model. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Kramers-Kronig relations | en_US |
dc.subject | radio frequency integrated circuit (RFIC) | en_US |
dc.subject | self-resonant frequency | en_US |
dc.subject | spiral inductor | en_US |
dc.title | A closed-form integral model of spiral inductor using the Kramers-Kronig relations | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/LMWC.2005.859019 | en_US |
dc.identifier.journal | IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS | en_US |
dc.citation.volume | 15 | en_US |
dc.citation.issue | 11 | en_US |
dc.citation.spage | 778 | en_US |
dc.citation.epage | 780 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000233208200020 | - |
dc.citation.woscount | 3 | - |
顯示於類別: | 期刊論文 |