完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorTsai, I-Lingen_US
dc.contributor.authorYang, Fu-Shuen_US
dc.contributor.authorChung, Jen-Fengen_US
dc.contributor.authorLu, Shao-Weien_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:18:10Z-
dc.date.available2014-12-08T15:18:10Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-03039-0en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/13134-
dc.description.abstractOnline artifact rejection, feature extraction, and pattern recognition are essential to advance the Brain Computer Interface (BCI) technology so as to be practical for real-world applications. The goals of BCI system should be a small size, rugged, lightweight, and have low power consumption to meet the requirements of wearability, portability, and durability. This study proposes and implements a moving-windowed Independent Component Analysis (ICA) on a battery-powered, miniature, embedded BCI. This study also tests the embedded BCI on simulated and real EEG signals. Experimental results indicated that the efficacy of the online ICA decornposition is comparable with that of the offline version of the same algorithm, suggesting the feasibility of ICA for online analysis of EEG in a BCI. To demonstrate the feasibility of the wearable embedded BCI, this study also implements an online spectral analysis to the resultant component activations to continuously estimate subject's task performance in near real time.en_US
dc.language.isoen_USen_US
dc.titleReal-Time Embedded EEG-Based Brain-Computer Interfaceen_US
dc.typeArticleen_US
dc.identifier.journalADVANCES IN NEURO-INFORMATION PROCESSING, PT IIen_US
dc.citation.volume5507en_US
dc.citation.spage1038en_US
dc.citation.epage1045en_US
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000270578200126-
顯示於類別:會議論文