Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Chun-Lingen_US
dc.contributor.authorTseng, Frank S. C.en_US
dc.contributor.authorLiang, Tyneen_US
dc.date.accessioned2014-12-08T15:18:11Z-
dc.date.available2014-12-08T15:18:11Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-01306-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/13145-
dc.description.abstractWith the rapid growth of text documents, document clustering has become one of the train techniques for organizing large amount of documents into a small number of meaningful clusters. However, there still exist several challenges for document clustering, such as high dimensionality, scalability. accuracy, meaningful cluster labels, and extracting semantics from texts. In order to improve the quality of document clustering results, we propose an effective Fuzzy Frequent Itemset-based Document Clustering (F(2)IDC) approach that combines fuzzy association rule mining with the background knowledge embedded in WordNet. A term hierarchy generated from WordNet is applied to discovery fuzzy frequent itemsets as candidate cluster labels for grouping documents. We have conducted experiments to evaluate our approach on Reuters-21578 dataset. The experimental result shows that our proposed method outperforms the accuracy quality of FIHC, HFTC, and UPGMA.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy association rule miningen_US
dc.subjectText miningen_US
dc.subjectDocument clusteringen_US
dc.subjectFrequent itemsetsen_US
dc.subjectWordNeten_US
dc.titleAn Integration of Fuzzy Association Rules and WordNet for Document Clusteringen_US
dc.typeProceedings Paperen_US
dc.identifier.journalADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGSen_US
dc.citation.volume5476en_US
dc.citation.spage147en_US
dc.citation.epage159en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000268632000013-
Appears in Collections:Conferences Paper