完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWei, Ling-Yinen_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.date.accessioned2014-12-08T15:18:12Z-
dc.date.available2014-12-08T15:18:12Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-01306-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/13156-
dc.description.abstractIn this paper, we formulate a dual clustering problem ill spatial data streams. A spatial data stream consists of data, points with attributes in the optimization and geography domains. We aim at partitioning these objects into disjoint clusters such that at each time window (1) objects in the same cluster satisfy the transitively r-connected relation in the optimization and geography domains, and (2) the number of clusters is as minimal as possible. We propose a Hierarchical-Based Clustering algorithm (HBC). Specifically, objects are represented as a graph structure, called RGraph, where each node represents an object and edges indicate their similarity relationships. In light of RGraph, algorithm HBC interatively merges clusters. Experimental results show the performance of the algorithm.en_US
dc.language.isoen_USen_US
dc.titleClustering Data Streams in Optimization and Geography Domainsen_US
dc.typeArticleen_US
dc.identifier.journalADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGSen_US
dc.citation.volume5476en_US
dc.citation.spage997en_US
dc.citation.epage1005en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000268632000103-
顯示於類別:會議論文