完整後設資料紀錄
DC 欄位語言
dc.contributor.authorD'yachkov, Aen_US
dc.contributor.authorHwang, Fen_US
dc.contributor.authorMacula, Aen_US
dc.contributor.authorVilenkin, Pen_US
dc.contributor.authorWeng, CWen_US
dc.date.accessioned2014-12-08T15:18:21Z-
dc.date.available2014-12-08T15:18:21Z-
dc.date.issued2005-10-01en_US
dc.identifier.issn1066-5277en_US
dc.identifier.urihttp://dx.doi.org/10.1089/cmb.2005.12.1129en_US
dc.identifier.urihttp://hdl.handle.net/11536/13232-
dc.description.abstractThe screening of data sets for "positive data objects" is essential to modern technology. A ( group) test that indicates whether a positive data object is in a specific subset or pool of the dataset can greatly facilitate the identification of all the positive data objects. A collection of tested pools is called a pooling design. Pooling designs are standard experimental tools in many biotechnical applications. In this paper, we use the ( linear) subspace relation coupled with the general concept of a "containment matrix" to construct pooling designs with surprisingly high degrees of error correction ( detection.) Error-correcting pooling designs are important to biotechnical applications where error rates often are as high as 15%. What is also surprising is that the rank of the pooling design containment matrix is independent of the number of positive data objects in the dataset.en_US
dc.language.isoen_USen_US
dc.subjectpooling designsen_US
dc.subjecterror correctionen_US
dc.titleA construction of pooling designs with some happy surprisesen_US
dc.typeArticleen_US
dc.identifier.doi10.1089/cmb.2005.12.1129en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL BIOLOGYen_US
dc.citation.volume12en_US
dc.citation.issue8en_US
dc.citation.spage1129en_US
dc.citation.epage1136en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000233288200006-
dc.citation.woscount27-
顯示於類別:期刊論文


文件中的檔案:

  1. 000233288200006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。