完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, Ying-Dar | en_US |
dc.contributor.author | Lin, Po-Ching | en_US |
dc.contributor.author | Wang, Sheng-Hao | en_US |
dc.contributor.author | Chen, I-Wei | en_US |
dc.contributor.author | Lai, Yuan-Cheng | en_US |
dc.date.accessioned | 2017-04-21T06:56:50Z | - |
dc.date.available | 2017-04-21T06:56:50Z | - |
dc.date.issued | 2016-06 | en_US |
dc.identifier.issn | 1932-8184 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/JSYST.2014.2301464 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/132579 | - |
dc.description.abstract | This paper presents the PCAPLib system for providing extracted, well-classified, and anonymized packet traces from real network traffic with two mechanisms. First, active trace collection actively extracts and classifies packet traces into sessions by leveraging multiple detection devices. Second, deep packet anonymization protects the privacy in the packet payloads for hundreds of application protocols while preserving the utility of the traces. We evaluate 318 anonymized packet traces collected over a period of four months and show that the efficiency of anonymization is up to 96%. The usefulness of this system for assessing false positives/false negatives in intrusion detection has been also demonstrated. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Packet anonymization | en_US |
dc.subject | privacy | en_US |
dc.subject | trace repository | en_US |
dc.subject | utility | en_US |
dc.title | PCAPLib: A System of Extracting, Classifying, and Anonymizing Real Packet Traces | en_US |
dc.identifier.doi | 10.1109/JSYST.2014.2301464 | en_US |
dc.identifier.journal | IEEE SYSTEMS JOURNAL | en_US |
dc.citation.volume | 10 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 520 | en_US |
dc.citation.epage | 531 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | 網路測試中心 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.contributor.department | Network Benchmarking Lab | en_US |
dc.identifier.wosnumber | WOS:000383258600013 | en_US |
顯示於類別: | 期刊論文 |