Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, I. -K.en_US
dc.contributor.authorPattinson, R. W.en_US
dc.contributor.authorBillam, T. P.en_US
dc.contributor.authorGardiner, S. A.en_US
dc.contributor.authorCornish, S. L.en_US
dc.contributor.authorHuang, T. -M.en_US
dc.contributor.authorLin, W. -W.en_US
dc.contributor.authorGou, S. -C.en_US
dc.contributor.authorParker, N. G.en_US
dc.contributor.authorProukakis, N. P.en_US
dc.date.accessioned2019-04-03T06:44:18Z-
dc.date.available2019-04-03T06:44:18Z-
dc.date.issued2016-02-18en_US
dc.identifier.issn2469-9926en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevA.93.023628en_US
dc.identifier.urihttp://hdl.handle.net/11536/132630-
dc.description.abstractWe study the sensitivity of coupled condensate formation dynamics on the history of initial stochastic domain formation in the context of instantaneously quenched elongated harmonically trapped immiscible two-component atomic Bose gases. The spontaneous generation of defects in the fastest condensing component, and subsequent coarse-graining dynamics, can lead to a deep oscillating microtrap into which the other component condenses, thereby establishing a long-lived composite defect in the form of a dark-bright solitary wave. We numerically map out diverse key aspects of these competing growth dynamics, focusing on the role of shot-to-shot fluctuations and global parameter changes (initial state choices, quench parameters, and condensate growth rates), with our findings also qualitatively confirmed by realistic finite-duration quenches. We conclude that phase-separated structures observable on experimental time scales are likely to be metastable states whose form is influenced by the stability and dynamics of the spontaneously emerging dark-bright solitary wave.en_US
dc.language.isoen_USen_US
dc.titleStochastic growth dynamics and composite defects in quenched immiscible binary condensatesen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevA.93.023628en_US
dc.identifier.journalPHYSICAL REVIEW Aen_US
dc.citation.volume93en_US
dc.citation.issue2en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department丘成桐中心zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentShing-Tung Yau Centeren_US
dc.identifier.wosnumberWOS:000370484400005en_US
dc.citation.woscount13en_US
Appears in Collections:Articles


Files in This Item:

  1. 65cff8ac423fdc4fad6c877b61080638.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.