完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTong, L. I.en_US
dc.contributor.authorSaminathan, R.en_US
dc.contributor.authorChang, C. W.en_US
dc.date.accessioned2017-04-21T06:56:21Z-
dc.date.available2017-04-21T06:56:21Z-
dc.date.issued2016-09en_US
dc.identifier.issn1726-2135en_US
dc.identifier.urihttp://dx.doi.org/10.3808/jei.201500322en_US
dc.identifier.urihttp://hdl.handle.net/11536/132681-
dc.description.abstractMitigating global warming problems initially involves reducing greenhouse gas (GHG) emissions, therefore the uncertainty of GHG emission estimates needs to be assessed concisely. Although the uncertainty of GHG emission estimates is generally evaluated using classical confidence interval, quantifying the uncertainty based on non-normal GHG emission estimates or small dataset may lead to a significant bias. Using bootstrap confidence intervals is an effective means of reducing such a bias. This study presents a procedure for constructing four bootstrap confidence intervals to assess the uncertainty of GHG emission estimates for three non-normal distributions (namely, Weibull, Gamma and Beta). These bootstrap confidence intervals are standard bootstrap (SB) confidence interval, percentile bootstrap (PB) confidence interval, Bias-corrected percentiles bootstrap (BCPB) confidence interval and bias-corrected and accelerated (BCa) confidence interval. The sensitivity of bootstrap intervals for emission data is examined under various combinations of sample size and parameters of underlying non-normal distributions using three indices: coverage performance, interval mean, and interval standard deviation. Simulation results indicate that the bootstrap confidence intervals for assessing the uncertainty of emission estimates are highly applicable with small sample size and the data distribution is non-normal. Compared with the classical confidence interval, bootstrap confidence intervals have smaller interval mean and smaller interval standard deviation for small sample size under non-normal distributions. This study recommends BCa confidence interval to assess the uncertainty of the emission estimates as long as sample size is 15 or more and the distribution is non-normal. A case study with emission data of the High-Bleed Pneumatic controllers demonstrates the effectiveness of the proposed procedureen_US
dc.language.isoen_USen_US
dc.subjectbootstrap confidence intervalsen_US
dc.subjectgreenhouse gasesen_US
dc.subjectemissionsen_US
dc.subjectnon-normal distributionsen_US
dc.subjectuncertaintiesen_US
dc.titleUncertainty Assessment of Non-normal Emission Estimates Using Non-Parametric Bootstrap Confidence Intervalsen_US
dc.identifier.doi10.3808/jei.201500322en_US
dc.identifier.journalJOURNAL OF ENVIRONMENTAL INFORMATICSen_US
dc.citation.volume28en_US
dc.citation.issue1en_US
dc.citation.spage61en_US
dc.citation.epage70en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000385478200006en_US
顯示於類別:期刊論文