Full metadata record
DC FieldValueLanguage
dc.contributor.authorHajinoroozi, Mehdien_US
dc.contributor.authorMao, Zijingen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorHuang, Yufeien_US
dc.date.accessioned2017-04-21T06:56:21Z-
dc.date.available2017-04-21T06:56:21Z-
dc.date.issued2016-09en_US
dc.identifier.issn0923-5965en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.image.2016.05.018en_US
dc.identifier.urihttp://hdl.handle.net/11536/132684-
dc.description.abstractWe considered the prediction of driver\'s cognitive states related to driving performance using EEG signals. We proposed a novel channel-wise convolutional neural network (CCNN) whose architecture considers the unique characteristics of EEG data. We also discussed CCNN-R, a CCNN variation that uses Restricted Boltzmann Machine to replace the convolutional filter, and derived the detailed algorithm. To test the performance of CCNN and CCNN-R, we assembled a large EEG dataset from 3 studies of driver fatigue that includes samples from 37 subjects. Using this dataset, we investigated the new CCNN and CCNN-R on raw EEG data and also Independent Component Analysis (ICA) decomposition. We tested both within-subject and cross-subject predictions and the results showed CCNN and CCNN-R achieved robust and improved performance over conventional DNN and CNN as well as other non-DL algorithms. (C) 2016 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectDeep neural networken_US
dc.subjectConvolutional neural networken_US
dc.subjectCognitive statesen_US
dc.titleEEG-based prediction of driver\'s cognitive performance by deep convolutional neural networken_US
dc.identifier.doi10.1016/j.image.2016.05.018en_US
dc.identifier.journalSIGNAL PROCESSING-IMAGE COMMUNICATIONen_US
dc.citation.volume47en_US
dc.citation.spage549en_US
dc.citation.epage555en_US
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000385601600046en_US
Appears in Collections:Articles