完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Shih-Hungen_US
dc.contributor.authorChen, You-Yinen_US
dc.contributor.authorLin, Sheng-Huangen_US
dc.contributor.authorLiao, Lun-Deen_US
dc.contributor.authorLu, Henry Horng-Shingen_US
dc.contributor.authorWang, Ching-Fuen_US
dc.contributor.authorChen, Po-Chuanen_US
dc.contributor.authorLo, Yu-Chunen_US
dc.contributor.authorDat Phan, Thanhen_US
dc.contributor.authorChao, Hsiang-Yaen_US
dc.contributor.authorLin, Hui-Chingen_US
dc.contributor.authorLai, Hsin-Yien_US
dc.contributor.authorHuang, Wei-Chenen_US
dc.date.accessioned2019-04-03T06:36:57Z-
dc.date.available2019-04-03T06:36:57Z-
dc.date.issued2016-12-09en_US
dc.identifier.issn1662-453Xen_US
dc.identifier.urihttp://dx.doi.org/10.3389/fnins.2016.00556en_US
dc.identifier.urihttp://hdl.handle.net/11536/132743-
dc.description.abstractSeveral neural decoding algorithms have successfully converted brain signals into commands to control a computer cursor and prosthetic devices. A majority of decoding methods, such as population vector algorithms (PVA), optimal linear estimators (OLE), and neural networks (NN), are effective in predicting movement kinematics, including movement direction, speed and trajectory but usually require a large number of neurons to achieve desirable performance. This study proposed a novel decoding algorithm even with signals obtained from a smaller numbers of neurons. We adopted sliced inverse regression (SIR) to predict forelimb movement from single-unit activities recorded in the rat primary motor (M1) cortex in a water-reward lever-pressing task. SIR performed weighted principal component analysis (RCA) to achieve effective dimension reduction for nonlinear regression. To demonstrate the decoding performance, SIR was compared to PVA, OLE, and NN. Furthermore, RCA and sequential feature selection (SFS) which are popular feature selection techniques were implemented for comparison of feature selection effectiveness. Among SIR, PVA, OLE, PCA, SFS, and NN decoding methods, the trajectories predicted by SIR (with a root mean square error, RMSE, of 8.47 +/- 1.32 mm) was closer to the actual trajectories compared with those predicted by PVA (30.41 +/- 11.73 mm), OLE (20.17 +/- 6.43 mm), PCA (19.13 +/- 0.75 mm), SFS (22.75 +/- 2.01 mm), and NN (16.75 +/- 2.02 mm). The superiority of SIR was most obvious when the sample size of neurons was small. We concluded that SIR sorted the input data to obtain the effective transform matrices for movement prediction, making it a robust decoding method for conditions with sparse neuronal information.en_US
dc.language.isoen_USen_US
dc.subjectsliced inverse regression (SIR)en_US
dc.subjectneural decodingen_US
dc.subjectforelimb movement predictionen_US
dc.subjectneural networks (NN)en_US
dc.subjectprinciple component analysis (PCA)en_US
dc.titleA Sliced Inverse Regression (SIR) Decoding the Forelimb Movement from Neuronal Spikes in the Rat Motor Cortexen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fnins.2016.00556en_US
dc.identifier.journalFRONTIERS IN NEUROSCIENCEen_US
dc.citation.volume10en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000389778800001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 8de5ef9a518e0f1a8d9a3d61c5bdf0dd.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。