Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Heng-Juien_US
dc.contributor.authorWei, Tzu-Chiaoen_US
dc.contributor.authorZhu, Yuan-Minen_US
dc.contributor.authorLiu, Rui-Ruien_US
dc.contributor.authorTzeng, Wen-Yenen_US
dc.contributor.authorTsai, Chih-Yaen_US
dc.contributor.authorZhan, Qianen_US
dc.contributor.authorLuo, Chih-Weien_US
dc.contributor.authorYu, Puen_US
dc.contributor.authorHe, Jr-Hauen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorHe, Qingen_US
dc.date.accessioned2017-04-21T06:55:39Z-
dc.date.available2017-04-21T06:55:39Z-
dc.date.issued2016-02-02en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://dx.doi.org/10.1002/adfm.201503912en_US
dc.identifier.urihttp://hdl.handle.net/11536/132774-
dc.description.abstractIn the pursuit of novel functionalities by utilizing the lattice degree of freedom in complex oxide heterostructure, the control mechanism through direct strain manipulation across the interfaces is still under development, especially with various stimuli, such as electric field, magnetic field, light, etc. In this study, the superlattices consisting of colossal-magnetoresistive manganites La0.7Sr0.3MnO3 (LSMO) and photostrictive SrRuO3 (SRO) have been designed to investigate the light-dependent controllability of lattice order in the corresponding functionalities and rich interface physics. Two substrates, SrTiO3 (STO) and LaAlO3 (LAO), have been employed to provide the different strain environments to the superlattice system, in which the LSMO sublayers exhibit different orbital occupations. Subsequently, by introducing light, we can modulate the strain state and orbital preference of LSMO sublayers through light-induced expansion of SRO sublayers, leading to surprisingly opposite changes in photoresistivity. The observed photoresistivity decreases in the superlattice grown on STO substrate while increases in the superlattice grown on LAO substrate under light illumination. This work has presented a model system that demonstrates the manipulation of orbital-lattice coupling and the resultant functionalities in artificial oxide superlattices via light stimulus.en_US
dc.language.isoen_USen_US
dc.subjectmanganites (La0en_US
dc.subject7Sr0en_US
dc.subject3MnO(3))en_US
dc.subjectorbital occupancyen_US
dc.subjectphotoresistivityen_US
dc.subjectstrontium ruthenate (SrRuO3)en_US
dc.subjectsuperlatticesen_US
dc.titleStrain-Mediated Inverse Photoresistivity in SrRuO3/La0.7Sr0.3MnO3 Superlatticesen_US
dc.identifier.doi10.1002/adfm.201503912en_US
dc.identifier.journalADVANCED FUNCTIONAL MATERIALSen_US
dc.citation.volume26en_US
dc.citation.issue5en_US
dc.citation.spage729en_US
dc.citation.epage737en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000369969100009en_US
Appears in Collections:Articles