Title: | Structural Insights into Substrate Recognition by Clostridium difficile Sortase |
Authors: | Yin, Jui-Chieh Fei, Chun-Hsien Lo, Yen-Chen Hsiao, Yu-Yuan Chang, Jyun-Cyuan Nix, Jay C. Chang, Yuan-Yu Yang, Lee-Wei Huang, I-Hsiu Wang, Shuying 生物科技學系 Department of Biological Science and Technology |
Keywords: | Clostridium difficile;sortase;substrate specificity;crystal structure;fluorescence resonance energy transfer |
Issue Date: | 22-Nov-2016 |
Abstract: | Sortases function as cysteine transpeptidases that catalyze the covalent attachment of virulence-associated surface proteins into the cell wall peptidoglycan in Gram-positive bacteria. The substrate proteins targeted by sortase enzymes have a cell wall sorting signal (CWSS) located at the C-terminus. Up to date, it is still not well understood how sortases with structural resemblance among different classes and diverse species of bacteria achieve substrate specificity. In this study, we focus on elucidating the molecular basis for specific recognition of peptide substrate PPKTG by Clostridium difficile sortase B (Cd-SrtB). Combining structural studies, biochemical assays and molecular dynamics simulations, we have constructed a computational model of Cd-SrtB(Delta N26)PPKTG complex and have validated the model by site-directed mutagensis studies and fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we have revealed that the fourth amino acid in the N-terminal direction from cleavage site of PPKTG forms specific interaction with Cd-SrtB and plays an essential role in configuring the peptide to allow more efficient substrate-specific cleavage by Cd-SrtB. |
URI: | http://dx.doi.org/10.3389/fcimb.2016.00160 http://hdl.handle.net/11536/132810 |
ISSN: | 2235-2988 |
DOI: | 10.3389/fcimb.2016.00160 |
Journal: | FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY |
Volume: | 6 |
Begin Page: | 0 |
End Page: | 0 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.