完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorHsaio, Wen-Hoaren_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.contributor.authorChang, Tao-Hsingen_US
dc.contributor.authorKuo, Tsung-Hsunen_US
dc.date.accessioned2017-04-21T06:55:41Z-
dc.date.available2017-04-21T06:55:41Z-
dc.date.issued2016-02en_US
dc.identifier.issn2168-2267en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCYB.2015.2403573en_US
dc.identifier.urihttp://hdl.handle.net/11536/132863-
dc.description.abstractUniversum, a collection of nonexamples that do not belong to any class of interest, has become a new research topic in machine learning. This paper devises a semi-supervised learning with Universum algorithm based on boosting technique, and focuses on situations where only a few labeled examples are available. We also show that the training error of AdaBoost with Universum is bounded by the product of normalization factor, and the training error drops exponentially fast when each weak classifier is slightly better than random guessing. Finally, the experiments use four data sets with several combinations. Experimental results indicate that the proposed algorithm can benefit from Universum examples and outperform several alternative methods, particularly when insufficient labeled examples are available. When the number of labeled examples is insufficient to estimate the parameters of classification functions, the Universum can be used to approximate the prior distribution of the classification functions. The experimental results can be explained using the concept of Universum introduced by Vapnik, that is, Universum examples implicitly specify a prior distribution on the set of classification functions.en_US
dc.language.isoen_USen_US
dc.subjectAdaBoosten_US
dc.subjectlearning with Universumen_US
dc.subjecttext classificationen_US
dc.titleSemi-Supervised Text Classification With Universum Learningen_US
dc.identifier.doi10.1109/TCYB.2015.2403573en_US
dc.identifier.journalIEEE TRANSACTIONS ON CYBERNETICSen_US
dc.citation.volume46en_US
dc.citation.issue2en_US
dc.citation.spage462en_US
dc.citation.epage473en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000370962900012en_US
顯示於類別:期刊論文