完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHwang, Ruey-Chingen_US
dc.contributor.authorChung, Huiminen_US
dc.contributor.authorChu, C. K.en_US
dc.date.accessioned2017-04-21T06:55:27Z-
dc.date.available2017-04-21T06:55:27Z-
dc.date.issued2016-12en_US
dc.identifier.issn0920-8550en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10693-015-0231-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/132937-
dc.description.abstractWe propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the three ones. Then, for the debt that is classified as lying between the two extremes, we use the probit transformation regression to predict its recovery rate. We use real data sets to support TPM. Our empirical results show that macroeconomic-, debt-, firm-, and industry-specific variables are all important in determining recovery rates. Using an expanding rolling window approach, our empirical results confirm that TPM has better and more robust out-of-sample performance than its alternatives, in the sense of yielding more accurate predicted recovery rates.en_US
dc.language.isoen_USen_US
dc.subjectExpanding rolling window approachen_US
dc.subjectOrdered probit modelen_US
dc.subjectProbit transformation regressionen_US
dc.subjectTwo-stage probit modelen_US
dc.subjectRecovery rateen_US
dc.titleA Two-Stage Probit Model for Predicting Recovery Ratesen_US
dc.identifier.doi10.1007/s10693-015-0231-0en_US
dc.identifier.journalJOURNAL OF FINANCIAL SERVICES RESEARCHen_US
dc.citation.volume50en_US
dc.citation.issue3en_US
dc.citation.spage311en_US
dc.citation.epage339en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000387614600002en_US
顯示於類別:期刊論文