完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Wu, Yen-Ting | en_US |
dc.contributor.author | Huang, Chun-Wei | en_US |
dc.contributor.author | Chiu, Chung-Hua | en_US |
dc.contributor.author | Chang, Chia-Fu | en_US |
dc.contributor.author | Chen, Jui-Yuan | en_US |
dc.contributor.author | Lin, Ting-Yi | en_US |
dc.contributor.author | Huang, Yu-Ting | en_US |
dc.contributor.author | Lu, Kuo-Chang | en_US |
dc.contributor.author | Yeh, Ping-Hung | en_US |
dc.contributor.author | Wu, Wen-Wei | en_US |
dc.date.accessioned | 2017-04-21T06:55:42Z | - |
dc.date.available | 2017-04-21T06:55:42Z | - |
dc.date.issued | 2016-02 | en_US |
dc.identifier.issn | 1530-6984 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1021/acs.nanolett.5b04309 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/132941 | - |
dc.description.abstract | Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated beta-Pt2Si/Si/theta-Ni2Si, beta-Pt2Si/theta-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 degrees C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials. sensing | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Silicide | en_US |
dc.subject | nanowires | en_US |
dc.subject | in situ TEM | en_US |
dc.subject | photosensor | en_US |
dc.subject | heterostructure | en_US |
dc.subject | ternary phase | en_US |
dc.title | Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications | en_US |
dc.identifier.doi | 10.1021/acs.nanolett.5b04309 | en_US |
dc.identifier.journal | NANO LETTERS | en_US |
dc.citation.volume | 16 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 1086 | en_US |
dc.citation.epage | 1091 | en_US |
dc.contributor.department | 材料科學與工程學系 | zh_TW |
dc.contributor.department | Department of Materials Science and Engineering | en_US |
dc.identifier.wosnumber | WOS:000370215200040 | en_US |
顯示於類別: | 期刊論文 |