完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Tsaipeien_US
dc.contributor.authorHung, Wen-Liangen_US
dc.date.accessioned2017-04-21T06:55:26Z-
dc.date.available2017-04-21T06:55:26Z-
dc.date.issued2017-02en_US
dc.identifier.issn0094-9655en_US
dc.identifier.urihttp://dx.doi.org/10.1080/00949655.2016.1209202en_US
dc.identifier.urihttp://hdl.handle.net/11536/132950-
dc.description.abstractEfficiently and effectively detecting shell-like structures of particular shapes is an important task in computer vision and image processing. This paper presents a generalized possibilistic c-means algorithm (PCM) for shell clustering based on the diversity index of degree-lambda proposed by Patil and Taillie [Diversity as a concept and its measurement. J Amer Statist Assoc. 1982;77:548-561]. Experiments on various data sets in Wang [Possibilistic shell clustering of template-based shapes. IEEE Trans Fuzzy Syst. 2009;17:777-793] show that the the proposed generalized PCM performs better than Wang\'s [Possibilistic shell clustering of template-based shapes. IEEE Trans Fuzzy Syst. 2009;17:777-793] possibilistic shell clustering method according two two criteria: (i) the \'grade of detection\' g(d) for each target cluster; (ii) the amount of computation, denoted as k(c), required to attain a given g(d).en_US
dc.language.isoen_USen_US
dc.subjectDiversity indexen_US
dc.subjectgeneric-template-based shape detectionen_US
dc.subjectpossibilistic shell clusteringen_US
dc.subjectpower-law relationen_US
dc.titleA generalized possibilistic approach to shell clustering of template-based shapesen_US
dc.identifier.doi10.1080/00949655.2016.1209202en_US
dc.identifier.journalJOURNAL OF STATISTICAL COMPUTATION AND SIMULATIONen_US
dc.citation.volume87en_US
dc.citation.issue3en_US
dc.citation.spage423en_US
dc.citation.epage436en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000390142100001en_US
顯示於類別:期刊論文