Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, M. H.en_US
dc.contributor.authorChou, S. K.en_US
dc.contributor.authorPan, Y. W.en_US
dc.contributor.authorLin, S. D.en_US
dc.contributor.authorGeorge, T.en_US
dc.contributor.authorLi, P. W.en_US
dc.date.accessioned2017-04-21T06:56:42Z-
dc.date.available2017-04-21T06:56:42Z-
dc.date.issued2016-12-21en_US
dc.identifier.issn0021-8979en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.4972219en_US
dc.identifier.urihttp://hdl.handle.net/11536/133077-
dc.description.abstractMicrodisk-arrays of vertically stacked 30-70nm Ge nanodots embedded within SiO2 were fabricated using thermal oxidation of Si0.75Ge0.25 abacus-shaped pillars and followed by post-annealing in oxygen-deficient conditions. The Ge nanodots are subjected to increasing quantum-confinement and tensile-strain by reducing dot size. We show that considerable quantum-confinement and tensile-strain can be generated within 30 nm Ge nanodots embedded in SiO2, as evidenced by large Raman red shifts for the Ge-Ge phonon lines in comparison to that for bulk Ge. These large quantum-confinement and tensile-strain facilitate direct-bandgap photoluminescence experimentally observed for the Ge nanodots, and are consistent with the strain-split photoluminescence transitions to the light-hole (LH) and heavy-hole (HH) valence bands at 0.83 eV and 0.88 eV, respectively. Time-resolved photoluminescence measurements conducted from 10-100K show temperature-insensitive carrier lifetimes of 2.7 ns and 5 ns for the HH and LH valence-band transitions, respectively, providing additional strong evidence of direct bandgap photoluminescence for tensile-strained Ge nanodots. Published by AIP Publishing.en_US
dc.language.isoen_USen_US
dc.title"Embedded Emitters": Direct bandgap Ge nanodots within SiO2en_US
dc.identifier.doi10.1063/1.4972219en_US
dc.identifier.journalJOURNAL OF APPLIED PHYSICSen_US
dc.citation.volume120en_US
dc.citation.issue23en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000391685500006en_US
Appears in Collections:Articles