完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYan, Jinliangen_US
dc.contributor.authorLai, Ming-Chihen_US
dc.contributor.authorLi, Zhilinen_US
dc.contributor.authorZhang, Zhiyueen_US
dc.date.accessioned2017-04-21T06:56:33Z-
dc.date.available2017-04-21T06:56:33Z-
dc.date.issued2017-04en_US
dc.identifier.issn2070-0733en_US
dc.identifier.urihttp://dx.doi.org/10.4208/aamm.2014.m888en_US
dc.identifier.urihttp://hdl.handle.net/11536/133132-
dc.description.abstractIn this paper, we propose a new energy-preserving scheme and a new momentum-preserving scheme for the modified regularized long wave equation. The proposed schemes are designed by using the discrete variational derivative method and the finite volume element method. For comparison, we also propose a finite volume element scheme. The conservation properties of the proposed schemes are analyzed and we find that the energy-preserving scheme can precisely conserve the discrete total mass and total energy, the momentum-preserving scheme can precisely conserve the discrete total mass and total momentum, while the finite volume element scheme merely conserve the discrete total mass. We also analyze their linear stability property using the Von Neumann theory and find that the proposed schemes are unconditionally linear stable. Finally, we present some numerical examples to illustrate the effectiveness of the proposed schemes.en_US
dc.language.isoen_USen_US
dc.subjectEnergyen_US
dc.subjectmomentumen_US
dc.subjectmassen_US
dc.subjectfinite volume element methoden_US
dc.subjectMRLW equationen_US
dc.titleNew Conservative Finite Volume Element Schemes for the Modified Regularized Long Wave Equationen_US
dc.identifier.doi10.4208/aamm.2014.m888en_US
dc.identifier.journalADVANCES IN APPLIED MATHEMATICS AND MECHANICSen_US
dc.citation.volume9en_US
dc.citation.issue2en_US
dc.citation.spage250en_US
dc.citation.epage271en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000393674000002en_US
顯示於類別:期刊論文