Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Chih-Hsienen_US
dc.contributor.authorChi, Yu-Chiehen_US
dc.contributor.authorWu, Chung-Lunen_US
dc.contributor.authorLin, Chun-Jungen_US
dc.contributor.authorTsai, Ling-Hsuanen_US
dc.contributor.authorChang, Jung-Hungen_US
dc.contributor.authorChen, Mu Kuen_US
dc.contributor.authorShih, Min-Hsiungen_US
dc.contributor.authorLee, Chao-Kueien_US
dc.contributor.authorWu, Chih-Ien_US
dc.contributor.authorTsai, Din Pingen_US
dc.contributor.authorLin, Gong-Ruen_US
dc.date.accessioned2017-04-21T06:55:30Z-
dc.date.available2017-04-21T06:55:30Z-
dc.date.issued2016en_US
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c5nr07172ken_US
dc.identifier.urihttp://hdl.handle.net/11536/133152-
dc.description.abstractThe catalytic solid-phase synthesis of self-organized nanoporous tin sulfide (SnS) with enhanced absorption, manipulative transmittance and depolarization features is demonstrated. Using an ultralow radio-frequency (RF) sputtering power, the variation of the orientation angle between the anodized aluminum oxide (AAO) membrane and the axis of the sputtered ion beam detunes the catalytically synthesized SnS from nanorod to nanoporous morphology, along the sidewall of the AAO membrane. The ultraslow catalytic sputtering synthesis on the AAO at the RF plasma power of 20 W and the orientation angle of 0 degrees regulates the porosity and integrality of nanoporous SnS, with average pore diameter of 80-150 nm. When transferring from planar to nanoporous structure, the phase composition changes from SnS to SnS2-Sn2S3, and the optical bandgap shrinks from 1.43 to 1.16 eV, due to the preferred crystalline orientation, which also contributes to an ultralow reflectance of <1% at 200-500 nm when both the transmittance and the surface scattering remain at their maxima. The absorption coefficient is enhanced by nearly one order of magnitude with its minimum of >5 x 10(4) cm(-1) at the wavelength between 200 and 700 nm, due to the red-shifting of the absorption spectrum to at least 100 nm. The catalytically self-organized nanoporous SnS causes strong haze and beam divergence of 20 degrees-30 degrees by depolarized nonlinear scattering at the surface, which favors the solar energy conversion with reduced surface reflection and enhanced photon scattering under preserved transmittance.en_US
dc.language.isoen_USen_US
dc.titleCatalytically solid-phase self-organization of nanoporous SnS with optical depolarizabilityen_US
dc.identifier.doi10.1039/c5nr07172ken_US
dc.identifier.journalNANOSCALEen_US
dc.citation.volume8en_US
dc.citation.issue8en_US
dc.citation.spage4579en_US
dc.citation.epage4587en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000371117900021en_US
Appears in Collections:Articles