完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Shang-Linen_US
dc.contributor.authorLiu, Yu-Tingen_US
dc.contributor.authorHsieh, Tsung-Yuen_US
dc.contributor.authorLin, Yang-Yinen_US
dc.contributor.authorChen, Chih-Yuen_US
dc.contributor.authorChuang, Chun-Hsiangen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2017-04-21T06:56:36Z-
dc.date.available2017-04-21T06:56:36Z-
dc.date.issued2017-02en_US
dc.identifier.issn1063-6706en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TFUZZ.2016.2598362en_US
dc.identifier.urihttp://hdl.handle.net/11536/133180-
dc.description.abstractA brain-computer interface (BCI) system using electroencephalography signals provides a convenient means of communication between the human brain and a computer. Motor imagery (MI), in which motor actions are mentally rehearsed without engaging in actual physical execution, has been widely used as a major BCI approach. One robust algorithm that can successfully cope with the individual differences in MI-related rhythmic patterns is to create diverse ensemble classifiers using the subband common spatial pattern (SBCSP) method. To aggregate outputs of ensemble members, this study uses fuzzy integral with particle swarm optimization (PSO), which can regulate subject-specific parameters for the assignment of optimal confidence levels for classifiers. The proposed system combining SBCSP, fuzzy integral, and PSO exhibits robust performance for offline single-trial classification of MI and real-time control of a robotic arm using MI. This paper represents the first attempt to utilize fuzzy fusion technique to attack the individual differences problem of MI applications in real-world noisy environments. The results of this study demonstrate the practical feasibility of implementing the proposed method for real-world applications.en_US
dc.language.isoen_USen_US
dc.subjectBrain-computer interface (BCI)en_US
dc.subjectelectroencephalography (EEG)en_US
dc.subjectfuzzy integralen_US
dc.subjectmotor imagery (MI)en_US
dc.subjectparticle swarm optimization (PSO)en_US
dc.titleFuzzy Integral With Particle Swarm Optimization for a Motor-Imagery-Based Brain-Computer Interfaceen_US
dc.identifier.doi10.1109/TFUZZ.2016.2598362en_US
dc.identifier.journalIEEE TRANSACTIONS ON FUZZY SYSTEMSen_US
dc.citation.volume25en_US
dc.citation.issue1en_US
dc.citation.spage21en_US
dc.citation.epage28en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000396393100003en_US
顯示於類別:期刊論文