完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiou, Guan-Chiunen_US
dc.contributor.authorLin, Ming-Weien_US
dc.contributor.authorLai, Yu-Lingen_US
dc.contributor.authorChang, Chiao-Kaien_US
dc.contributor.authorJiang, Jian-Mingen_US
dc.contributor.authorSu, Yu-Weien_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.contributor.authorHsu, Yao-Janeen_US
dc.date.accessioned2017-04-21T06:56:18Z-
dc.date.available2017-04-21T06:56:18Z-
dc.date.issued2017-01-25en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.6b10508en_US
dc.identifier.urihttp://hdl.handle.net/11536/133204-
dc.description.abstractA nanocomposite layer comprising the conjugated polymer poly[(9,9-bis(3\'(N,N-dimethylamino)propy1)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene] (PFN) and nickel oxide (NiOx) has been employed as the hole transport layer (HTL) in organic photovoltaics (OPVs) featuring PBDTTBO-C-8 and [6,6] -phenyl -C-71-butyric acid methyl ester (PC71BM) as the active layer. The optimal device incorporating the PFN:NiOx nanocomposite as the HTLs displayed a power conversion efficiency (PCE) to 6.2%, up from 4.5% for the corresponding device incorporating pristine NiOx as the HTL layer: a nearly 40% improvement in PCE. X-ray photoelectron spectroscopy (XPS) was used to determine the types of chemical bonding, ultraviolet photoelectron spectroscopy (UPS) to measure the change in work function, and atomic force microscopy (AFM) to examine the morphology of the composite layers. The growth of nickel trioxide, Ni2O3, in the PFN:NiOx layer played a key role in producing the p-doping effect and in tuning the work function, thereby improving the overall device performance.en_US
dc.language.isoen_USen_US
dc.subjectpoly[(9,9-bis(3'-(N,N-dimethylamino)propy1)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene] (PFN)en_US
dc.subjectnickel oxide (NiOx)en_US
dc.subjectnickel trioxide (Ni2O3)en_US
dc.subjecthole transport layer (HTL)en_US
dc.subjectorganic photovoltaics (OPVs)en_US
dc.subjectnanocompositeen_US
dc.subjectcharge transferen_US
dc.subjectX-ray photoelectron spectroscopy (XPS)en_US
dc.titleFluorene Conjugated Polymer/Nickel Oxide Nanocomposite Hole Transport Layer Enhances the Efficiency of Organic Photovoltaic Devicesen_US
dc.identifier.doi10.1021/acsami.6b10508en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume9en_US
dc.citation.issue3en_US
dc.citation.spage2232en_US
dc.citation.epage2239en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000392909500028en_US
顯示於類別:期刊論文