Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe Bing-Hauen_US
dc.contributor.authorWitek, Henryk A.en_US
dc.date.accessioned2017-04-21T06:55:48Z-
dc.date.available2017-04-21T06:55:48Z-
dc.date.issued2016-01en_US
dc.identifier.issn0009-4536en_US
dc.identifier.urihttp://dx.doi.org/10.1002/jccs.201500086en_US
dc.identifier.urihttp://hdl.handle.net/11536/133229-
dc.description.abstractWe discuss two general techniques for constructing homogeneous functions c of the kinetic energy operator T for the helium atom in a state of symmetry S. The first technique is based on algebraic identification of the kernel of T in a space spanned by some predetermined set of basis functions. The second technique, analytic in nature, constructs the homogeneous functions of T as formal power series with coefficients deduced from recurrence relations stemming from the requirement Tc=0. Both approaches are capable of producing a great variety of homogeneous functions c with arbitrary homogeneity that can prove useful for constructing the exact ground state wave function for the helium atom.en_US
dc.language.isoen_USen_US
dc.subjectHelium atomen_US
dc.subjectHomogeneous solutions of PDEen_US
dc.subjectExact wave functionen_US
dc.titleToward Exact Analytical Wave Function of Helium Atom: Two Techniques for Constructing Homogeneous Functions of Kinetic Energy Operatoren_US
dc.identifier.doi10.1002/jccs.201500086en_US
dc.identifier.journalJOURNAL OF THE CHINESE CHEMICAL SOCIETYen_US
dc.citation.volume63en_US
dc.citation.issue1en_US
dc.citation.spage69en_US
dc.citation.epage82en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000369014800006en_US
Appears in Collections:Articles