完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShieh, Gwowenen_US
dc.date.accessioned2017-04-21T06:56:09Z-
dc.date.available2017-04-21T06:56:09Z-
dc.date.issued2017en_US
dc.identifier.issn0266-4763en_US
dc.identifier.urihttp://dx.doi.org/10.1080/02664763.2016.1158797en_US
dc.identifier.urihttp://hdl.handle.net/11536/133249-
dc.description.abstractSample size determination is one of the most commonly encountered tasks in the design of every applied research. The general guideline suggests that a pilot study can offer plausible planning values for the vital model characteristics. This article examines two viable approaches to taking into account the imprecision of a variance estimate in sample size calculations for linear statistical models. The multiplier procedure employs an adjusted sample variance in the form of a multiple of the observed sample variance. The Bayesian method accommodates the uncertainty of a sample variance through a prior distribution. It is shown that the two seemingly distinct techniques are equivalent for sample size determination under the designated assurance requirements that the actual power exceeds the planned threshold with a given tolerance probability, or the expected power attains the desired level. The selection of optimum pilot sample size for minimizing the expected total cost is also considered.en_US
dc.language.isoen_USen_US
dc.subjectExpected poweren_US
dc.subjectpilot studyen_US
dc.subjectsample varianceen_US
dc.subjecttolerance probabilityen_US
dc.titleThe equivalence of two approaches to incorporating variance uncertainty in sample size calculations for linear statistical modelsen_US
dc.identifier.doi10.1080/02664763.2016.1158797en_US
dc.identifier.journalJOURNAL OF APPLIED STATISTICSen_US
dc.citation.volume44en_US
dc.citation.issue1en_US
dc.citation.spage40en_US
dc.citation.epage56en_US
dc.contributor.department管理科學系zh_TW
dc.contributor.departmentDepartment of Management Scienceen_US
dc.identifier.wosnumberWOS:000394567100005en_US
顯示於類別:期刊論文