Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Fan-Hsuan | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2017-04-21T06:55:33Z | - |
dc.date.available | 2017-04-21T06:55:33Z | - |
dc.date.issued | 2015-04-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2015.12.014 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/133379 | - |
dc.description.abstract | The Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. For Laplacian matrices of graphs, we find their upper bounds of largest eigenvalues, lower bounds of second-smallest eigenvalues and upper bounds of Laplacian spreads. The strongly regular graphs attain all the above bounds. Some other extremal graphs are also provided. (C) 2015 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Laplacian matrix | en_US |
dc.subject | Laplacian spread | en_US |
dc.subject | Strongly regular graph | en_US |
dc.title | A bound on the Laplacian spread which is tight for strongly regular graphs | en_US |
dc.identifier.doi | 10.1016/j.laa.2015.12.014 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 494 | en_US |
dc.citation.spage | 11 | en_US |
dc.citation.epage | 22 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000370891400002 | en_US |
Appears in Collections: | Articles |