Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Fan-Hsuanen_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2017-04-21T06:55:33Z-
dc.date.available2017-04-21T06:55:33Z-
dc.date.issued2015-04-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2015.12.014en_US
dc.identifier.urihttp://hdl.handle.net/11536/133379-
dc.description.abstractThe Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. For Laplacian matrices of graphs, we find their upper bounds of largest eigenvalues, lower bounds of second-smallest eigenvalues and upper bounds of Laplacian spreads. The strongly regular graphs attain all the above bounds. Some other extremal graphs are also provided. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectLaplacian matrixen_US
dc.subjectLaplacian spreaden_US
dc.subjectStrongly regular graphen_US
dc.titleA bound on the Laplacian spread which is tight for strongly regular graphsen_US
dc.identifier.doi10.1016/j.laa.2015.12.014en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume494en_US
dc.citation.spage11en_US
dc.citation.epage22en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000370891400002en_US
Appears in Collections:Articles