Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Wen-Gueien_US
dc.contributor.authorLin, Song-Sunen_US
dc.date.accessioned2017-04-21T06:55:47Z-
dc.date.available2017-04-21T06:55:47Z-
dc.date.issued2016-07en_US
dc.identifier.issn1078-0947en_US
dc.identifier.urihttp://dx.doi.org/10.3934/dcds.2016.36.3705en_US
dc.identifier.urihttp://hdl.handle.net/11536/133398-
dc.description.abstractThe commonly used topological entropy h(top) (U) of the multidimensional shift space U is the rectangular spatial entropy h(r) (U) which is the limit of growth rate of admissible local patterns on finite rectangular sub-lattices which expands to whole space Z(d), d >= 2. This work studies spatial entropy h(Omega)(U) of shift space U on general expanding system Omega = {Omega(n)}(n=1)(infinity) where Omega(n) is increasing fi nite sublattices and expands to Z(d). Omega is called genuinely d-dimensional if Omega(n) contains no lower-dimensional part whose size is comparable to that of its d-dimensional part. We show that h(r)(U) is the supremum of h(Omega)(U) for all genuinely d-dimensional Omega. Furthermore, when Omega is genuinely d-dimensional and satis fi es certain conditions, then h(Omega) (U) = h(r)(U). On the contrary, when Omega(n) contains a lower-dimensional part which is comparable to its d-dimensional part, then h r (U) < h(Omega)(U) for some U. Therefore, h(r)(U) is appropriate to be the d-dimensional spatial entropy.en_US
dc.language.isoen_USen_US
dc.subjectTopological entropyen_US
dc.subjectspatial entropyen_US
dc.subjectsymbolic dynamical systemen_US
dc.subjectshift spaceen_US
dc.subjectblock gluingen_US
dc.titleON SPATIAL ENTROPY OF MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMSen_US
dc.identifier.doi10.3934/dcds.2016.36.3705en_US
dc.identifier.journalDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMSen_US
dc.citation.volume36en_US
dc.citation.issue7en_US
dc.citation.spage3705en_US
dc.citation.epage3718en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000371999400010en_US
Appears in Collections:Articles