Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hu, Wen-Guei | en_US |
dc.contributor.author | Lin, Song-Sun | en_US |
dc.date.accessioned | 2017-04-21T06:55:47Z | - |
dc.date.available | 2017-04-21T06:55:47Z | - |
dc.date.issued | 2016-07 | en_US |
dc.identifier.issn | 1078-0947 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3934/dcds.2016.36.3705 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/133398 | - |
dc.description.abstract | The commonly used topological entropy h(top) (U) of the multidimensional shift space U is the rectangular spatial entropy h(r) (U) which is the limit of growth rate of admissible local patterns on finite rectangular sub-lattices which expands to whole space Z(d), d >= 2. This work studies spatial entropy h(Omega)(U) of shift space U on general expanding system Omega = {Omega(n)}(n=1)(infinity) where Omega(n) is increasing fi nite sublattices and expands to Z(d). Omega is called genuinely d-dimensional if Omega(n) contains no lower-dimensional part whose size is comparable to that of its d-dimensional part. We show that h(r)(U) is the supremum of h(Omega)(U) for all genuinely d-dimensional Omega. Furthermore, when Omega is genuinely d-dimensional and satis fi es certain conditions, then h(Omega) (U) = h(r)(U). On the contrary, when Omega(n) contains a lower-dimensional part which is comparable to its d-dimensional part, then h r (U) < h(Omega)(U) for some U. Therefore, h(r)(U) is appropriate to be the d-dimensional spatial entropy. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Topological entropy | en_US |
dc.subject | spatial entropy | en_US |
dc.subject | symbolic dynamical system | en_US |
dc.subject | shift space | en_US |
dc.subject | block gluing | en_US |
dc.title | ON SPATIAL ENTROPY OF MULTI-DIMENSIONAL SYMBOLIC DYNAMICAL SYSTEMS | en_US |
dc.identifier.doi | 10.3934/dcds.2016.36.3705 | en_US |
dc.identifier.journal | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS | en_US |
dc.citation.volume | 36 | en_US |
dc.citation.issue | 7 | en_US |
dc.citation.spage | 3705 | en_US |
dc.citation.epage | 3718 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000371999400010 | en_US |
Appears in Collections: | Articles |