Full metadata record
DC FieldValueLanguage
dc.contributor.authorRan, Yinglien_US
dc.contributor.authorZhang, Zhaoen_US
dc.contributor.authorKo, Ker-Ien_US
dc.contributor.authorLiang, Junen_US
dc.date.accessioned2017-04-21T06:55:47Z-
dc.date.available2017-04-21T06:55:47Z-
dc.date.issued2016-05en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-015-9838-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/133401-
dc.description.abstractThis paper studies approximation algorithm for the maximum weight budgeted connected set cover (MWBCSC) problem. Given an element set , a collection of sets , a weight function on , a cost function on , a connected graph (called communication graph) on vertex set , and a budget , the MWBCSC problem is to select a subcollection such that the cost , the subgraph of induced by is connected, and the total weight of elements covered by (that is ) is maximized. We present a polynomial time algorithm for this problem with a natural communication graph that has performance ratio , where is the maximum degree of graph and is the number of sets in . In particular, if every set has cost at most , the performance ratio can be improved to .en_US
dc.language.isoen_USen_US
dc.subjectBudgeted set coveren_US
dc.subjectConnected set coveren_US
dc.subjectApproximation algorithmen_US
dc.titleAn approximation algorithm for maximum weight budgeted connected set coveren_US
dc.identifier.doi10.1007/s10878-015-9838-1en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume31en_US
dc.citation.issue4en_US
dc.citation.spage1505en_US
dc.citation.epage1517en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000373574300011en_US
Appears in Collections:Articles