完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2017-04-21T06:56:06Z-
dc.date.available2017-04-21T06:56:06Z-
dc.date.issued2016-03en_US
dc.identifier.issn2162-237Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TNNLS.2015.2414658en_US
dc.identifier.urihttp://hdl.handle.net/11536/133517-
dc.description.abstractConsidering the hierarchical data groupings in text corpus, e.g., words, sentences, and documents, we conduct the structural learning and infer the latent themes and topics for sentences and words from a collection of documents, respectively. The relation between themes and topics under different data groupings is explored through an unsupervised procedure without limiting the number of clusters. A tree stick-breaking process is presented to draw theme proportions for different sentences. We build a hierarchical theme and topic model, which flexibly represents the heterogeneous documents using Bayesian nonparametrics. Thematic sentences and topical words are extracted. In the experiments, the proposed method is evaluated to be effective to build semantic tree structure for sentences and the corresponding words. The superiority of using tree model for selection of expressive sentences for document summarization is illustrated.en_US
dc.language.isoen_USen_US
dc.subjectBayesian nonparametrics (BNPs)en_US
dc.subjectdocument summarizationen_US
dc.subjectstructural learningen_US
dc.subjecttopic modelen_US
dc.titleHierarchical Theme and Topic Modelingen_US
dc.identifier.doi10.1109/TNNLS.2015.2414658en_US
dc.identifier.journalIEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMSen_US
dc.citation.volume27en_US
dc.citation.issue3en_US
dc.citation.spage565en_US
dc.citation.epage578en_US
dc.contributor.department電機學院zh_TW
dc.contributor.departmentCollege of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000372022900006en_US
顯示於類別:期刊論文