完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWong, Sai-Keungen_US
dc.contributor.authorCheng, Yu-Chunen_US
dc.date.accessioned2017-04-21T06:56:26Z-
dc.date.available2017-04-21T06:56:26Z-
dc.date.issued2016-01en_US
dc.identifier.issn0178-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00371-014-1056-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/133584-
dc.description.abstractWe propose a graphics processing unit-based approach to accelerate the radial view-based culling method for continuous self-collision detection of deformable surfaces. The deformable surfaces may have small round-shaped holes and ghost triangles are used to fill the holes. We identify the key processes of the radial view-based culling method, including triangle classification, traversal of bounding volume hierarchies and handling violated triangles (i.e., the triangles intersecting with ghost triangles). We propose efficient parallel processing techniques to perform these key processes on a programmable graphics unit. We have evaluated our proposed approach on several examples. Experimental results show that our approach significantly cuts down the cost of the key processes of the radial-based culling method, compared with the serial implementation on CPU.en_US
dc.language.isoen_USen_US
dc.subjectContinuous collision detectionen_US
dc.subjectRadial view-based cullingen_US
dc.subjectDeformable surfacesen_US
dc.titleGPU-based radial view-based culling for continuous self-collision detection of deformable surfacesen_US
dc.identifier.doi10.1007/s00371-014-1056-9en_US
dc.identifier.journalVISUAL COMPUTERen_US
dc.citation.volume32en_US
dc.citation.issue1en_US
dc.citation.spage67en_US
dc.citation.epage81en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000371666800007en_US
顯示於類別:期刊論文