Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Fang-Yinen_US
dc.contributor.authorLin, Wei-Lienen_US
dc.contributor.authorChen, Yu-Chieen_US
dc.date.accessioned2017-04-21T06:55:43Z-
dc.date.available2017-04-21T06:55:43Z-
dc.date.issued2016en_US
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c6nr00368ken_US
dc.identifier.urihttp://hdl.handle.net/11536/133687-
dc.description.abstractStaphylococcus aureus, a commonly found pathogen, can cause food poisoning and infections. Thus, it is necessary to develop analytical methods for the rapid screening of S. aureus in suspicious samples. Magnetic nanoparticles (MNPs) are widely used as affinity probes to selectively enrich target species from complex samples because of their high specific surface area and magnetic properties. The MNP surface should be functionalized to have the capability to target specific species. We herein propose a straightforward method to functionalize aluminum oxide-coated iron oxide (Fe3O4@Al2O3) MNPs with the peptide HHHHHHDEEGLFVD (D). The peptide D was comprised of three domains: polyhistidine (H-6) used as the linker, DEE added as the spacer, and GLFVD used for targeting S. aureus. D was immobilized on the surface of Fe3O4@Al2O3 MNPs through H-6-Al chelation. Our results showed that the D-functionalized Fe3O4@Al2O3 MNPs (D-Fe3O4 MNPs) possess the capability to target S. aureus. The selective trapping experiments were conducted under microwave-heating for only 60 s, and sufficient bacterial cells were trapped by the MNPs to be identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We demonstrated that the D-Fe3O4@Al2O3 MNPs combined with MALDI-MS can be used to rapidly characterize trace amounts of S. aureus in complex juice and egg samples.en_US
dc.language.isoen_USen_US
dc.titleAffinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureusen_US
dc.identifier.doi10.1039/c6nr00368ken_US
dc.identifier.journalNANOSCALEen_US
dc.citation.volume8en_US
dc.citation.issue17en_US
dc.citation.spage9217en_US
dc.citation.epage9225en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000375285800019en_US
Appears in Collections:Articles