Full metadata record
DC FieldValueLanguage
dc.contributor.authorGarg, Rahulen_US
dc.contributor.authorSpector, Danielen_US
dc.date.accessioned2017-04-21T06:55:51Z-
dc.date.available2017-04-21T06:55:51Z-
dc.date.issued2015en_US
dc.identifier.issn0022-2518en_US
dc.identifier.urihttp://hdl.handle.net/11536/133713-
dc.description.abstractIn this paper, we show how standard techniques can be used to obtain new "almost"-Lipschitz estimates for the classical Riesz potentials acting on L-P-spaces in the supercritical exponent. Whereas similar results are known to hold for Riesz potentials acting on L-P(Omega) for Omega subset of R-N a bounded domain (and also on Sobolev, Sobolev-Orlicz functions), our results concern the mapping properties of the Riesz potentials on all of R-N. Additionally, we introduce and prove sharp estimates on the modulus of continuity for a family of Riesz-type potentials. In particular, through a new representation via these Riesz-type potentials, we establish analagous results for the logarithmic potential. As applications of these continuity estimates, we deduce new regularity estimates for distributional solutions to Poisson\'s equation, as well as an alternative proof of the supercritical Sobolev embedding theorem first shown by Brezis and Wainger in 1980.en_US
dc.language.isoen_USen_US
dc.subjectRiesz potentialsen_US
dc.subjectlogarithmic potentialen_US
dc.subjectPoisson's equationen_US
dc.subjectSobolev embeddingen_US
dc.titleOn the Role of Riesz Potentials in Poisson\'s Equation and Sobolev Embeddingsen_US
dc.identifier.journalINDIANA UNIVERSITY MATHEMATICS JOURNALen_US
dc.citation.volume64en_US
dc.citation.issue6en_US
dc.citation.spage1697en_US
dc.citation.epage1719en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000368218200004en_US
Appears in Collections:Articles