完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Hsuan-Shengen_US
dc.contributor.authorTsai, Wen-Jiinen_US
dc.date.accessioned2017-04-21T06:55:14Z-
dc.date.available2017-04-21T06:55:14Z-
dc.date.issued2016-05en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-015-2447-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/133790-
dc.description.abstractData mining and frequent pattern analysis have recently become a popular way of discovering new knowledge from a data set. However, it is rarely applied to video semantic analysis. Therefore, this paper introduces two methods: frequent-pattern trained HMM and frequent-pattern tailored HMM to incorporate frequent pattern analysis into multimodal HMM event classification for baseball videos. Besides, different symbol coding methods including temporal sequence coding and co-occurrence symbol coding for multimodal HMM classification are compared. The results of our experiments on baseball video event classification demonstrate that integration of frequent pattern analysis could help to improve event classification performances.en_US
dc.language.isoen_USen_US
dc.subjectMultimedia systemen_US
dc.subjectVideo semantic analysisen_US
dc.subjectBaseball event classificationen_US
dc.subjectInterval-based multimodal featureen_US
dc.subjectTemporal sequence symbol codingen_US
dc.subjectCo-occurrence symbol codingen_US
dc.subjectHMMen_US
dc.subjectData miningen_US
dc.subjectFrequent pattern analysisen_US
dc.subjectFrequent-pattern trained HMMen_US
dc.subjectFrequent-pattern tailored HMMen_US
dc.subjectVOGUEen_US
dc.titleIncorporating frequent pattern analysis into multimodal HMM event classification for baseball videosen_US
dc.identifier.doi10.1007/s11042-015-2447-2en_US
dc.identifier.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.citation.volume75en_US
dc.citation.issue9en_US
dc.citation.spage4913en_US
dc.citation.epage4932en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000376601700005en_US
顯示於類別:Articles