Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, Chi Hin | en_US |
dc.contributor.author | Czubak, Magdalena | en_US |
dc.date.accessioned | 2017-04-21T06:55:21Z | - |
dc.date.available | 2017-04-21T06:55:21Z | - |
dc.date.issued | 2016-05-06 | en_US |
dc.identifier.issn | 0294-1449 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.anihpc.2015.01.002 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/133794 | - |
dc.description.abstract | The Leray-Hopf solutions to the Navier Stokes equation are known to be unique on R-2. In our previous work, we showed the breakdown of uniqueness in a hyperbolic setting. In this article, we show how to formulate the problem in order so the uniqueness can be restored. (C) 2015 Elsevier Masson SAS. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Navier-Stokes | en_US |
dc.subject | Leray-Hopf | en_US |
dc.subject | Non-uniqueness | en_US |
dc.subject | Uniqueness | en_US |
dc.subject | Hyperbolic space | en_US |
dc.subject | Harmonic forms | en_US |
dc.title | Remarks on the weak formulation of the Navier-Stokes equations on the 2D hyperbolic space | en_US |
dc.identifier.doi | 10.1016/j.anihpc.2015.01.002 | en_US |
dc.identifier.journal | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | en_US |
dc.citation.volume | 33 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 655 | en_US |
dc.citation.epage | 698 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000376216000002 | en_US |
Appears in Collections: | Articles |