Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Chi Hinen_US
dc.contributor.authorCzubak, Magdalenaen_US
dc.date.accessioned2017-04-21T06:55:21Z-
dc.date.available2017-04-21T06:55:21Z-
dc.date.issued2016-05-06en_US
dc.identifier.issn0294-1449en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.anihpc.2015.01.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/133794-
dc.description.abstractThe Leray-Hopf solutions to the Navier Stokes equation are known to be unique on R-2. In our previous work, we showed the breakdown of uniqueness in a hyperbolic setting. In this article, we show how to formulate the problem in order so the uniqueness can be restored. (C) 2015 Elsevier Masson SAS. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNavier-Stokesen_US
dc.subjectLeray-Hopfen_US
dc.subjectNon-uniquenessen_US
dc.subjectUniquenessen_US
dc.subjectHyperbolic spaceen_US
dc.subjectHarmonic formsen_US
dc.titleRemarks on the weak formulation of the Navier-Stokes equations on the 2D hyperbolic spaceen_US
dc.identifier.doi10.1016/j.anihpc.2015.01.002en_US
dc.identifier.journalANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIREen_US
dc.citation.volume33en_US
dc.citation.issue3en_US
dc.citation.spage655en_US
dc.citation.epage698en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000376216000002en_US
Appears in Collections:Articles