完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsieh, Chi-Tien_US
dc.contributor.authorHsieh, Tung-Hanen_US
dc.contributor.authorChang, Shu-Weien_US
dc.date.accessioned2017-04-21T06:55:49Z-
dc.date.available2017-04-21T06:55:49Z-
dc.date.issued2016-04en_US
dc.identifier.issn0010-4655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cpc.2015.12.018en_US
dc.identifier.urihttp://hdl.handle.net/11536/133924-
dc.description.abstractWe develop schemes of subpixel smoothing for the multiband Luttinger-Kohn and Burt-Foreman Hamiltonians of semiconductor nanostructures. With proper procedures of parameter averages at abrupt interfaces, computational errors of envelope functions due to the discontinuity of heterostructures are significantly reduced. Two smoothing approaches are presented. One is based on eliminations of the first order perturbation in energy, and the other is an application of the Hellmann-Feynman theorem. Using the finite-difference method, we find that while the procedure of perturbation theory seems to be more robust than that of Hellmann-Feynman theorem, the errors of both schemes are (considerably) lower than that without smoothing or with direct but unjustified averages of untransformed parameters. The proposed approaches may enhance numerical accuracies and reduce computational cost for the modeling of nanostructures. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSubpixel smoothingen_US
dc.subjectMultiband k . p methoden_US
dc.subjectFirst-order perturbationen_US
dc.subjectHellmann-Feynman theoremen_US
dc.titleImproving accuracy using subpixel smoothing for multiband effective-mass Hamiltonians of semiconductor nanostructuresen_US
dc.identifier.doi10.1016/j.cpc.2015.12.018en_US
dc.identifier.journalCOMPUTER PHYSICS COMMUNICATIONSen_US
dc.citation.volume201en_US
dc.citation.spage63en_US
dc.citation.epage76en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000371553100007en_US
顯示於類別:期刊論文