完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Hsiuyingen_US
dc.date.accessioned2019-04-03T06:41:01Z-
dc.date.available2019-04-03T06:41:01Z-
dc.date.issued2016-05-01en_US
dc.identifier.issn1422-0067en_US
dc.identifier.urihttp://dx.doi.org/10.3390/ijms17050773en_US
dc.identifier.urihttp://hdl.handle.net/11536/133970-
dc.description.abstractMicroRNAs (miRNAs) are shown to be involved in the initiation and progression of cancers in the literature, and the expression of miRNAs is used as an important cancer prognostic tool. The aim of this study is to predict high-confidence miRNA biomarkers for cancer. We adopt a method that combines miRNA phylogenetic structure and miRNA microarray data analysis to discover high-confidence miRNA biomarkers for colon, prostate, pancreatic, lung, breast, bladder and kidney cancers. There are 53 miRNAs selected through this method that either have potential to involve a single cancer's development or to involve several cancers' development. These miRNAs can be used as high-confidence miRNA biomarkers of these seven investigated cancers for further experiment validation. miR-17, miR-20, miR-106a, miR-106b, miR-92, miR-25, miR-16, miR-195 and miR-143 are selected to involve a single cancer's development in these seven cancers. They have the potential to be useful miRNA biomarkers when the result can be confirmed by experiments.en_US
dc.language.isoen_USen_US
dc.subjectcanceren_US
dc.subjectmicroarrayen_US
dc.subjectmicroRNAen_US
dc.subjectsequenceen_US
dc.subjectphylogenetic treeen_US
dc.titlePredicting MicroRNA Biomarkers for Cancer Using Phylogenetic Tree and Microarray Analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/ijms17050773en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF MOLECULAR SCIENCESen_US
dc.citation.volume17en_US
dc.citation.issue5en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000378791400160en_US
dc.citation.woscount3en_US
顯示於類別:期刊論文


文件中的檔案:

  1. acc298a18a98c59a423296d2a595d2f8.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。