Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Yi-Chiaen_US
dc.contributor.authorLee, Ming-Yien_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorRahman, Mohammad Maksuduren_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2017-04-21T06:56:14Z-
dc.date.available2017-04-21T06:56:14Z-
dc.date.issued2016-06en_US
dc.identifier.issn0741-3106en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LED.2016.2561205en_US
dc.identifier.urihttp://hdl.handle.net/11536/134037-
dc.description.abstractThis letter presents a computational study on the band profile of Si/SiC quantum dot (QD) superlattice for solar cell devices and the theoretical conversion efficiency. We find that both the miniband energy of QD superlattice and the conversion efficiency of QD solar cell highly correlate to the space among layers and the number of layers. When the distance between layers is >2 nm, the impact of the number of layers on the tunable ground-state energy bandwidth is weakened. The conversion efficiency increases as the layer distance decreases; however, when the number of layers is greater than 4, the increasing rate of conversion efficiency declines.en_US
dc.language.isoen_USen_US
dc.subjectMinibanden_US
dc.subjectSi/SiC quantum doten_US
dc.subjectsuperlatticeen_US
dc.subjectsolar cellen_US
dc.subjectmultilayeren_US
dc.subjectlayer distanceen_US
dc.subjectconversion efficiencyen_US
dc.titleSimulation Study of Multilayer Si/SiC Quantum Dot Superlattice for Solar Cell Applicationsen_US
dc.identifier.doi10.1109/LED.2016.2561205en_US
dc.identifier.journalIEEE ELECTRON DEVICE LETTERSen_US
dc.citation.volume37en_US
dc.citation.issue6en_US
dc.citation.spage758en_US
dc.citation.epage761en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000379934100018en_US
Appears in Collections:Articles