完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Fan, Feng-lei | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2017-04-21T06:56:13Z | - |
dc.date.available | 2017-04-21T06:56:13Z | - |
dc.date.issued | 2016-10-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2016.05.009 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/134055 | - |
dc.description.abstract | Let G be a simple graph of order n with maximum degree Delta. Let lambda (resp. mu) denote the maximum number of common neighbors of a pair of adjacent vertices (resp. nonadjacent distinct vertices) of G. Let q(G) denote the largest eigenvalue of the signless Laplacian matrix of G. We show that q(G) <= Delta - mu/4 + root(Delta - mu/4)(2) + (1 + lambda)Delta + mu(n - 1) -Delta(2), with equality if and only if G is a strongly regular graph with parameters (n, Delta, lambda, mu). (C) 2016 Elsevier Inc. All rights | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Signless Laplacian matrix | en_US |
dc.subject | Strongly regular graphs | en_US |
dc.title | A characterization of strongly regular graphs in terms of the largest signless Laplacian eigenvalues | en_US |
dc.identifier.doi | 10.1016/j.laa.2016.05.009 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 506 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.epage | 5 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000381954300001 | en_US |
顯示於類別: | 期刊論文 |