完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFan, Feng-leien_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2017-04-21T06:56:13Z-
dc.date.available2017-04-21T06:56:13Z-
dc.date.issued2016-10-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2016.05.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/134055-
dc.description.abstractLet G be a simple graph of order n with maximum degree Delta. Let lambda (resp. mu) denote the maximum number of common neighbors of a pair of adjacent vertices (resp. nonadjacent distinct vertices) of G. Let q(G) denote the largest eigenvalue of the signless Laplacian matrix of G. We show that q(G) <= Delta - mu/4 + root(Delta - mu/4)(2) + (1 + lambda)Delta + mu(n - 1) -Delta(2), with equality if and only if G is a strongly regular graph with parameters (n, Delta, lambda, mu). (C) 2016 Elsevier Inc. All rightsen_US
dc.language.isoen_USen_US
dc.subjectSignless Laplacian matrixen_US
dc.subjectStrongly regular graphsen_US
dc.titleA characterization of strongly regular graphs in terms of the largest signless Laplacian eigenvaluesen_US
dc.identifier.doi10.1016/j.laa.2016.05.009en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume506en_US
dc.citation.spage1en_US
dc.citation.epage5en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000381954300001en_US
顯示於類別:期刊論文