Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Szu-Chengen_US
dc.contributor.authorJheng, Shih-Daen_US
dc.date.accessioned2019-04-03T06:40:08Z-
dc.date.available2019-04-03T06:40:08Z-
dc.date.issued2016-08-22en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://dx.doi.org/10.1038/srep31801en_US
dc.identifier.urihttp://hdl.handle.net/11536/134079-
dc.description.abstractThis paper reports a novel type of vortex lattice, referred to as a bubble crystal, which was discovered in rapidly rotating Bose gases with long-range interactions. Bubble crystals differ from vortex lattices which possess a single quantum flux per unit cell, while atoms in bubble crystals are clustered periodically and surrounded by vortices. No existing model is able to describe the vortex structure of bubble crystals; however, we identified a mathematical lattice, which is a subset of coherent states and exists periodically in the physical space. This lattice is called a von Neumann lattice, and when it possesses a single vortex per unit cell, it presents the same geometrical structure as an Abrikosov lattice. In this report, we extend the von Neumann lattice to one with an integral number of flux quanta per unit cell and demonstrate that von Neumann lattices well reproduce the translational properties of bubble crystals. Numerical simulations confirm that, as a generalized vortex, a von Neumann lattice can be physically realized using vortex lattices in rapidly rotating Bose gases with dipole interatomic interactions.en_US
dc.language.isoen_USen_US
dc.titlePhysical Realization of von Neumann Lattices in Rotating Bose Gases with Dipole Interatomic Interactionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/srep31801en_US
dc.identifier.journalSCIENTIFIC REPORTSen_US
dc.citation.volume6en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000381704300001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles


Files in This Item:

  1. f2f96999800401717d97cf37887941d8.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.