完整後設資料紀錄
DC 欄位語言
dc.contributor.authorRozenbaum, Viktor M.en_US
dc.contributor.authorDekhtyar, Marina L.en_US
dc.contributor.authorLin, Sheng Hsienen_US
dc.contributor.authorTrakhtenberg, Leonid I.en_US
dc.date.accessioned2017-04-21T06:55:36Z-
dc.date.available2017-04-21T06:55:36Z-
dc.date.issued2016-08-14en_US
dc.identifier.issn0021-9606en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.4960622en_US
dc.identifier.urihttp://hdl.handle.net/11536/134089-
dc.description.abstractWe consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity). Published by AIP Publishing.en_US
dc.language.isoen_USen_US
dc.titlePhotoinduced diffusion molecular transporten_US
dc.identifier.doi10.1063/1.4960622en_US
dc.identifier.journalJOURNAL OF CHEMICAL PHYSICSen_US
dc.citation.volume145en_US
dc.citation.issue6en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000381680300010en_US
顯示於類別:期刊論文