完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Mu-Chenen_US
dc.contributor.authorHsu, Chun-Chinen_US
dc.contributor.authorMalhotra, Bharaten_US
dc.contributor.authorTiwari, Manoj Kumaren_US
dc.date.accessioned2017-04-21T06:55:46Z-
dc.date.available2017-04-21T06:55:46Z-
dc.date.issued2016en_US
dc.identifier.issn0020-7543en_US
dc.identifier.urihttp://dx.doi.org/10.1080/00207543.2016.1161250en_US
dc.identifier.urihttp://hdl.handle.net/11536/134177-
dc.description.abstractIndependent Component Analysis (ICA) has been extensively used for detecting faults in industrial processes. While applying ICA to process monitoring, the inability of identifying the important components affect the fault diagnosis ability. For further improving the competence of ICA, this paper proposes an approach integrating ICA, Durbin Watson (DW) criterion and Support Vector Data Description (SVDD) to monitor non-Gaussian process for detecting faults. In the proposed approach, namely ICA-DW-SVDD, ICA is a non-Gaussian information extractor from original variables, DW identifies dominating ICs, and SVDD plays the role of fault detector. This paper also discusses the retracing method to detect original variables causing disturbance in the process. One simulation case and the Tennessee Eastman Process are used to demonstrate the effectiveness of our proposed approach.en_US
dc.language.isoen_USen_US
dc.subjectprocess controlen_US
dc.subjectstatistical process control (SPC)en_US
dc.subjectindependent component analysisen_US
dc.subjectsupport vector data descriptionen_US
dc.titleAn efficient ICA-DW-SVDD fault detection and diagnosis method for non-Gaussian processesen_US
dc.identifier.doi10.1080/00207543.2016.1161250en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF PRODUCTION RESEARCHen_US
dc.citation.volume54en_US
dc.citation.issue17en_US
dc.citation.spage5208en_US
dc.citation.epage5218en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000380169900011en_US
顯示於類別:期刊論文