完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Chien-, Ien_US
dc.contributor.authorTsai, Cheng-Jungen_US
dc.contributor.authorYang, Ya-Ruen_US
dc.contributor.authorYang, Wei-Pangen_US
dc.date.accessioned2017-04-21T06:49:46Z-
dc.date.available2017-04-21T06:49:46Z-
dc.date.issued2007en_US
dc.identifier.isbn978-0-7695-2874-8en_US
dc.identifier.urihttp://dx.doi.org/10.1109/FSKD.2007.129en_US
dc.identifier.urihttp://hdl.handle.net/11536/134465-
dc.description.abstractExperiments show that CAIM discretization algorithm is superior to all the other top-down discretization algorithms. However CAIM algorithm does not take the data distribution into account. The discretization formula used in CAIM also gives a high factor to the numbers of generated intervals. The two disadvantages make CAIM may generate irrational discrete results in some cases and further leads to the decrease of predictive accuracy of a classifier In this paper we propose the Class-Attribute Contingency Coefficient discretization algorithm. The experimental results showed that compared with CAIM, our method can generate a better discretization scheme to bring on the improvement of accuracy of classification. With regard to the number of generated rules and execution time of a classifier CACC and CAIM achieve comparable results.en_US
dc.language.isoen_USen_US
dc.titleA top-down and greedy method for discretization of continuous attributesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/FSKD.2007.129en_US
dc.identifier.journalFOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGSen_US
dc.citation.spage472en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000252459400094en_US
dc.citation.woscount0en_US
顯示於類別:會議論文