完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHong, Chin-Mingen_US
dc.contributor.authorChen, Chih-Mingen_US
dc.contributor.authorChen, Shyuan-Yien_US
dc.contributor.authorHuang, Chao-Yenen_US
dc.date.accessioned2017-04-21T06:49:45Z-
dc.date.available2017-04-21T06:49:45Z-
dc.date.issued2006en_US
dc.identifier.isbn978-0-7803-9490-2en_US
dc.identifier.issn2161-4393en_US
dc.identifier.urihttp://hdl.handle.net/11536/134476-
dc.description.abstractThis study attempts to propose a novel neuro-fuzzy network which can efficiently reason fuzzy rules based on training data to solve the medical diagnosis problems. First, this study proposes a refined K-means clustering algorithm and a gradient-based learning rules to logically determine and adaptively tuned the fuzzy membership functions for the employed neuro-fuzzy network. In the meanwhile, this study also presents a feature reduction scheme based on the grey-relational analysis to simplify the fuzzy rules obtained from the employed neuro-fuzzy network. Experimental results indicated that the proposed neuro-fuzzy network with feature reduction can discover very simplified and easily interpretable fuzzy rules to support medical diagnosis.en_US
dc.language.isoen_USen_US
dc.titleA novel and efficient neuro-fuzzy classifier for medical diagnosisen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10en_US
dc.citation.spage735en_US
dc.citation.epage+en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000245125901030en_US
dc.citation.woscount3en_US
顯示於類別:會議論文