Full metadata record
DC FieldValueLanguage
dc.contributor.authorChao, Yi-Hsiangen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorChang, Ruei-Chuanen_US
dc.date.accessioned2017-04-21T06:49:40Z-
dc.date.available2017-04-21T06:49:40Z-
dc.date.issued2006en_US
dc.identifier.isbn978-3-540-49665-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/134489-
dc.description.abstractIn a log-likelihood ratio (LLR)-based speaker verification system, the alternative hypothesis is usually ill-defined and hard to characterize a priori, since it should cover the space of all possible impostors. In this paper, we propose a new LLR measure in an attempt to characterize the alternative hypothesis in a more effective and robust way than conventional methods. This LLR measure can be further formulated as a non-linear discriminant classifier and solved by kernel-based techniques, such as the Kernel Fisher Discriminant (KFD) and Support Vector Machine (SVM). The results of experiments on two speaker verification tasks show that the proposed methods outperform classical LLR-based approaches.en_US
dc.language.isoen_USen_US
dc.subjectspeaker verificationen_US
dc.subjectlog-likelihood ratioen_US
dc.subjectKernel Fisher Discriminanten_US
dc.subjectSupport Vector Machineen_US
dc.titleA novel alternative hypothesis characterization using kernel classifiers for LLR-based speaker verificationen_US
dc.typeProceedings Paperen_US
dc.identifier.journalCHINESE SPOKEN LANGUAGE PROCESSING, PROCEEDINGSen_US
dc.citation.volume4274en_US
dc.citation.spage506en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000244824800048en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper