Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Chuan-Yenen_US
dc.contributor.authorChen, Yen-Linen_US
dc.contributor.authorKe, Kun-Cingen_US
dc.contributor.authorYuan, Shyan-Mingen_US
dc.date.accessioned2017-04-21T06:49:01Z-
dc.date.available2017-04-21T06:49:01Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-7543-3en_US
dc.identifier.issn2158-3994en_US
dc.identifier.urihttp://hdl.handle.net/11536/134546-
dc.description.abstractFast detection of pedestrians moving across the roads is a big challenge for in-vehicle embedded systems. Because the shape features of on-road pedestrians are irregular and complex, so that the detection techniques cost large computational resources. However, the in-vehicle embedded systems only have limited computational resources. To resolve this challenge, we propose fast pedestrian detection algorithms based on histogram of oriented gradients (HOGs), and support vector machines (SVMs). The proposed techniques are evaluated and implemented on a digital signal processing (DSP) based embedded platform. The experimental results demonstrate that the proposed detection techniques can provide high computational efficiency and detection accuracy.en_US
dc.language.isoen_USen_US
dc.titleReal-time Pedestrian Detection Technique for Embedded Driver Assistance Systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE)en_US
dc.citation.spage206en_US
dc.citation.epage207en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000371904100090en_US
dc.citation.woscount2en_US
Appears in Collections:Conferences Paper