完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Heng-Xiuen_US
dc.contributor.authorChen, Bo-Anen_US
dc.contributor.authorTseng, Po-Hsuanen_US
dc.contributor.authorFeng, Kai-Tenen_US
dc.contributor.authorWang, Tian-Shengen_US
dc.date.accessioned2017-04-21T06:49:21Z-
dc.date.available2017-04-21T06:49:21Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-5090-2073-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/134562-
dc.description.abstractWe enhance the area average (AA) algorithm based on received signal strength (RSS) fingerprinting in Wi-Fi infrastructure by utilizing map information. The area searching (AS) algorithm adopts the concept of Cell-ID method before fingerprinting is proposed to select appropriate areas to reduce the estimation error. The fusion-based RSS distance computation (FRD) scheme can represent the RSS distance more accurate when both 2.4 GHz and 5 GHz are considered. Experiment results validate that the enhanced algorithms achieve above 90% of area estimation accuracy in the area with access points in four different testing environments.en_US
dc.language.isoen_USen_US
dc.titleEnhanced Area Estimation Algorithms for Indoor Wireless Localizationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW)en_US
dc.citation.spage241en_US
dc.citation.epage242en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000392265400121en_US
dc.citation.woscount0en_US
顯示於類別:會議論文