Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Tsaipeien_US
dc.date.accessioned2017-04-21T06:49:21Z-
dc.date.available2017-04-21T06:49:21Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-5090-0625-0en_US
dc.identifier.issn1544-5615en_US
dc.identifier.urihttp://hdl.handle.net/11536/134565-
dc.description.abstractThis paper presents a new method of template based shell clustering that allows more flexible free deformation of the cluster prototypes with respect to the template-defined shapes. This is achieved via a soft division of the template into several template parts, each allowed to have its own set of transform parameters. A fuzzification factor, inspired by the one used in the standard fuzzy c-means algorithm, is used to control the degree of deformation by blending the transform parameters of the template parts. We demonstrate that this approach gives better shape detection and fitting results than the original possibilistic c-template algorithm using synthetic data of several different shapes.en_US
dc.language.isoen_USen_US
dc.subjectshell clusteringen_US
dc.subjecttemplate-based clusteringen_US
dc.subjectpossibilistic c-meansen_US
dc.subjectdeformable templatesen_US
dc.titleA Flexible Possibilistic C-Template Shell Clustering Method with Adjustable Degree of Deformationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE)en_US
dc.citation.spage1516en_US
dc.citation.epage1522en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000392150700211en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper