完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTamura, Takeyukien_US
dc.contributor.authorAkutsu, Tatsuyaen_US
dc.contributor.authorLin, Chun-Yuen_US
dc.contributor.authorYang, Jinn-Moonen_US
dc.date.accessioned2017-04-21T06:48:56Z-
dc.date.available2017-04-21T06:48:56Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-5090-3834-3en_US
dc.identifier.issn2471-7819en_US
dc.identifier.urihttp://dx.doi.org/10.1109/BIBE.2016.25en_US
dc.identifier.urihttp://hdl.handle.net/11536/134632-
dc.description.abstractSelection of influential genes using gene expression data from normal and disease samples is an important topic in bioinformatics. In this paper, we propose a novel computational method for the problem, which combines gene expression patterns from normal and disease samples with a mathematical model of metabolic networks. This method seeks a set of k genes knockout of which drives the state of the metabolic network towards that in the disease samples. We adopt a Boolean model of metabolic networks and formulate the problem as a maximization problem under an integer linear programming framework. We applied the proposed method to selection of influential genes using gene expression data from normal samples and disease (head and neck cancer) samples. The result suggests that the proposed method can select more biologically relevant genes than an existing P-value based ranking method can.en_US
dc.language.isoen_USen_US
dc.subjectgene expressionen_US
dc.subjectmetabolic networksen_US
dc.subjectmarker genesen_US
dc.subjectdriver genesen_US
dc.titleFinding Influential Genes Using Gene Expression Data and Boolean Models of Metabolic Networksen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/BIBE.2016.25en_US
dc.identifier.journal2016 IEEE 16TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE)en_US
dc.citation.spage57en_US
dc.citation.epage63en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000391847500009en_US
dc.citation.woscount0en_US
顯示於類別:會議論文