Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Yung-Huien_US
dc.contributor.authorZheng, Bo-Renen_US
dc.contributor.authorJi, Dai-Yanen_US
dc.contributor.authorTien, Chung-Haoen_US
dc.contributor.authorLiu, Po-Tsunen_US
dc.date.accessioned2019-04-03T06:47:37Z-
dc.date.available2019-04-03T06:47:37Z-
dc.date.issued2014-01-01en_US
dc.identifier.isbn978-1-62841-244-4en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://dx.doi.org/10.1117/12.2060838en_US
dc.identifier.urihttp://hdl.handle.net/11536/134711-
dc.description.abstractCross sensor iris matching may seriously degrade the recognition performance because of the sensor mis-match problem of iris images between the enrollment and test stage. In this paper, we propose two novel patch-based heterogeneous dictionary learning method to attack this problem. The first method applies the latest sparse representation theory while the second method tries to learn the correspondence relationship through PCA in heterogeneous patch space. Both methods learn the basic atoms in iris textures across different image sensors and build connections between them. After such connections are built, at test stage, it is possible to hallucinate (synthesize) iris images across different sensors. By matching training images with hallucinated images, the recognition rate can be successfully enhanced. The experimental results showed the satisfied results both visually and in terms of recognition rate. Experimenting with an iris database consisting of 3015 images, we show that the EER is decreased 39.4% relatively by the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectsensor mis-matchen_US
dc.subjectpatch-based heterogeneous dictionaryen_US
dc.subjectsparse representationen_US
dc.titleHeterogeneous iris image hallucination using sparse representation on a learned heterogeneous patch dictionaryen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.2060838en_US
dc.identifier.journalAPPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVIIen_US
dc.citation.volume9217en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000344014100053en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper


Files in This Item:

  1. 1866bfa6231af25bc9a7090308598bc8.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.