完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShoombuatong, Watsharaen_US
dc.contributor.authorCharoenkwan, Phasiten_US
dc.contributor.authorHuang, Hui-Lingen_US
dc.contributor.authorLee, Hua-Chinen_US
dc.contributor.authorChaijaruwanich, Jeerayuten_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2017-04-21T06:48:44Z-
dc.date.available2017-04-21T06:48:44Z-
dc.date.issued2013en_US
dc.identifier.isbn978-1-4673-5875-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/134730-
dc.description.abstractMany computational methods have been developed to predict protein crystallization. Most methods use amino acid and dipeptide compositions as part of the informative features. To advance the prediction accuracy, the support vector machine (SVM) based classifiers and ensemble approaches were effective and commonly-used techniques. However, these techniques suffer from the low interpretation ability of insight into crystallization. In this study, we utilize a newly-developed scoring card method (SCM) with a dipeptide composition feature to predict protein crystallization. This SCM classifier obtains prediction results 74%, 0.55 and 0.83 for accuracy, sensitivity and specificity, respectively, which is comparable to the SVM classifier using the same benchmarks. The experimental results show that the SCM classifier has advantages of simplicity, high interpretability, and high accuracy in predicting protein crystallization, compared with existing SVM-based ensemble classifiers.en_US
dc.language.isoen_USen_US
dc.subjectprotein crystallizationen_US
dc.subjectprotein predictionen_US
dc.subjectscoring card methoden_US
dc.subjectgenetic algorithmen_US
dc.titlePredicting Protein Crystallization Using a Simple Scoring Card Methoden_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB)en_US
dc.citation.spage23en_US
dc.citation.epage30en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000333898800004en_US
dc.citation.woscount1en_US
顯示於類別:會議論文