完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Yu-Chiaen_US
dc.contributor.authorChen, An-Pinen_US
dc.date.accessioned2017-04-21T06:48:11Z-
dc.date.available2017-04-21T06:48:11Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-1490-9en_US
dc.identifier.issn2161-4393en_US
dc.identifier.urihttp://hdl.handle.net/11536/134748-
dc.description.abstractIn this study, a novel procedure of time series dynamic behaviors clustering is proposed to improve the accuracy of minimum -variance optimal hedge ratio (OHR) estimation for future hedging. The dynamic behaviors of market fluctuation are extracted by measurement of variances, covariance, price spread, and their first and second differences. The behaviors with similar patterns are clustered using a growing hierarchical self-organizing map (GHSOM). The observations for OHR estimation are collected based on the hierarchical cluster structure and processed by within-cluster resampling. The spots and futures of the Taiwan Weighted Index (TWI) are adopted to demonstrate that the futures hedge effectiveness can be significantly improved.en_US
dc.language.isoen_USen_US
dc.subjectcluster analysisen_US
dc.subjectfinancial time seriesen_US
dc.subjecthedge ratioen_US
dc.subjectGHSOMen_US
dc.titleFutures Hedging Using Clusters with Dynamic Behavior of Market Fluctuationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000309341302120en_US
dc.citation.woscount0en_US
顯示於類別:會議論文