完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Hua-Fuen_US
dc.contributor.authorChen, Hsuan-Shengen_US
dc.date.accessioned2017-04-21T06:50:09Z-
dc.date.available2017-04-21T06:50:09Z-
dc.date.issued2011en_US
dc.identifier.isbn978-1-61284-349-0en_US
dc.identifier.issn1945-7871en_US
dc.identifier.urihttp://hdl.handle.net/11536/134814-
dc.description.abstractMining melody structure patterns from music query data is one of the most interesting issues of multimedia data mining. In this paper, we introduce a new kind of melody structure pattern, called emerging melody pattern (EMP), for knowledge discovery from music query data streams. EMPs are defined as music data items with melody item-sets whose support increase significantly from one sliding window to another window from streaming melody data sequences. An efficient data mining algorithm, called MEMPA (Mining Emerging Melody Pattern Algorithm), is proposed to discover all EMPs from music query data. In the framework of MEMPA, a prefix tree-based structure, called EMP-tree (Emerging Melody Pattern tree), is developed for storing EMPs effectively from current stream sliding windows. Experimental results show that the proposed algorithm is an efficient method for discovering all EMPs from streaming melody sequences.en_US
dc.language.isoen_USen_US
dc.subjectData miningen_US
dc.subjectmultimedia data miningen_US
dc.subjectmusic data miningen_US
dc.subjectemerging melody pattern miningen_US
dc.titleDISCOVERING EMERGING MELODY PATTERNS FROM CUSTOMER QUERY DATA STREAMS OF MUSIC SERVICEen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME)en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000304354700054en_US
dc.citation.woscount0en_US
顯示於類別:會議論文